Magnetics

IHLP Selection Example

INPUT

$\mathbf{L}_{\text {REQ }}$	$\mathbf{I}_{\mathbf{D C}}$	$\boldsymbol{\Delta}$	Freq.	$\mathbf{T}_{\text {AMB }}$	$\mathbf{V}-\boldsymbol{\mu} \mathbf{s}$	$\boldsymbol{\delta}$
$0.54 \mu \mathrm{H}$	20 A	7.39 A	300 kHz	$50^{\circ} \mathrm{C}$	4.14	0.46

IHLP SELECTED

Step 1.

IHLP-4040DZ-01 0.56 $\boldsymbol{\mu} \mathbf{H}$									
\mathbf{L}	$\mathbf{D C R}$	$\mathbf{I}_{\text {HEAT }}$	$\mathbf{I}_{\text {SAT }}$	$\mathbf{R}_{\text {TH }}$	$\mathbf{P}_{\text {HEAT }}$	$\mathbf{E T}_{\mathbf{1 0 0}}$	$\mathbf{K}_{\mathbf{0}}$	$\mathbf{K}_{\mathbf{1}}$	
$0.56 \mu \mathrm{H}$	0.0017Ω	30 A	49 A	$26.96{ }^{\circ} \mathrm{C} / \mathrm{W}$	1.48 W	0.88	18.31	0.00340	

VERIFICATION

Step 2.

$$
\mathrm{B}_{\mathrm{PK}}^{\text {OPER }}, ~=\frac{4.14}{0.88} \times 100=470.5 \mathrm{G}
$$

Step 3.

$$
f_{e}=\frac{300000}{2 \pi\left(0.46-0.46^{2}\right)}=192216.1 \mathrm{~Hz}
$$

Step 4.

$$
P_{\text {CORE }}=18.31 \times 192216^{0.188} \times 470.5^{2.118} \times 300000 \times 10^{-14}=0.248 \mathrm{~W}
$$

Step 5.

$$
\text { The core losses are } 0.248 \mathrm{~W} \text { which is less then } 1 / 3 \text { of } \mathrm{P}_{\text {HEAT }}(0.493 \mathrm{~W})
$$

Step 6.

$$
P_{\text {CUallowed }}=1.48-0.248=1.32 \mathrm{~W}
$$

Step 7.

$$
\begin{gathered}
R_{\text {OPER }}=0.0017 \times\left[\frac{274.5+50}{259.5}\right]=0.00213 \Omega \\
P_{D C}=20^{2} \times 0.00213=0.852 \mathrm{~W} \\
P_{A C}=0.00340 \times 7.39^{2} \times \sqrt{300000} \times 0.00213=0.217 \mathrm{~W}
\end{gathered}
$$

Step 8.

$$
P_{\text {TOTAL }}=0.248+0.852+0.217=1.317 \mathrm{~W}
$$

Step 9.

$$
\begin{aligned}
& \Delta \mathrm{T}=1.317 \times 26.96=35.51^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\text {OPER }}=50+35.51=85.51^{\circ} \mathrm{C}
\end{aligned}
$$

Step 10.

$$
\mathrm{I}_{\text {PEAK }}=20+\frac{7.39}{2}=23.7 \mathrm{~A}
$$

$\mathrm{I}_{\text {SAT }}=49 \mathrm{~A}$ which is greater then the required 23.7 A

IHLP Selection Example

SELECTION CRITERIA

1. Limit core losses ($\mathrm{P}_{\text {CORE }}$) to $\leq 1 / 3$ of total losses for $40^{\circ} \mathrm{C}$ temperature rise ($\mathrm{P}_{\text {HEAT }}$).
2. Total copper losses allowed will be equal to P HEAT $-\mathrm{P}_{\text {CORE }}$.
3. Maximum component temperature should be kept $\leq 125^{\circ} \mathrm{C}, 155^{\circ} \mathrm{C}$ for -51 components.
4. Maximum $\Delta \mathrm{T}$ should be $\leq 40^{\circ} \mathrm{C}$ (this can be exceeded provided caution is taken to insure max. temperature $\leq 125^{\circ} \mathrm{C} / 155^{\circ} \mathrm{C}$).
5. $I_{\text {PEAK }} \leq I_{\text {SAT }}$ (recommended, $I_{\text {PEAK }}$ can exceed $I_{\text {SAT }}$ with caution due to soft saturation of IHLP product).

GOVERNING EQUATIONS

1. $\mathrm{B}_{\text {PK }}^{\text {OPER }}$ $=\frac{E T_{\mathrm{ckt}}}{E T_{100}} \times 100$
[G]
2. $P_{D C}=I^{2}{ }_{D C} \times R_{\text {OPER }}$
[W]
3. $f_{e}=\frac{f_{0}}{2 \pi\left(\delta-\delta^{2}\right)} \quad[\mathrm{Hz}]$
4. $P_{\text {CORE }}=K_{0} f_{e} \mathrm{~K}_{\mathrm{f}}-1 \quad \mathrm{~B}_{\mathrm{pk}}{ }^{\mathrm{Kb}} \times \mathrm{f}_{0} \times 10^{-14}$
[W]
5. $\mathrm{P}_{\text {TOTAL }}=\mathrm{P}_{\text {CORE }}+\mathrm{P}_{\mathrm{DC}}+\mathrm{P}_{\mathrm{AC}}$ [W]
6. $\Delta \mathrm{T}=\mathrm{P}_{\text {TOTAL }} \times \mathrm{R}_{\mathrm{TH}} \quad\left[{ }^{\circ} \mathrm{C}\right]$
7. $\mathrm{P}_{\mathrm{AC}}=\mathrm{K}_{1} \times \Delta \mathrm{I}^{2} \times \sqrt{\mathrm{f}_{0}} \times \mathrm{R}_{\mathrm{OPER}}$
8. $\quad R_{\text {OPER }}=R_{\text {TYP. }} \times\left[\frac{274.5+\mathrm{T}_{\text {AMB }}}{259.5}\right]$
[A]
9. $\mathrm{T}_{\text {OPER }}=\mathrm{T}_{\mathrm{AMB}}+\Delta \mathrm{T} \quad\left[{ }^{\circ} \mathrm{C}\right]$
10. $I_{\text {PEAK }}=I_{D C}+\frac{\Delta I}{2}$
[A]

Notes

${ }^{(1)}$ Equation \#5 assumes a $40^{\circ} \mathrm{C}$ temperature rise and will have the same units as $\mathrm{R}_{\text {TYP }}$.
(2) For equations $\# 3 \mathrm{f}$ in Hz and B_{PK} in G .
${ }^{(3)} \mathrm{R}_{\text {OPER }}$ is based on a $40^{\circ} \mathrm{C}$ temperature rise.
${ }^{(4)} \mathrm{K}_{\mathrm{f}}$ is 1.188 for -01 material, 1.173 for -11 material, and 1.044 for -51 material.
${ }^{(5)} \mathrm{K}_{\mathrm{b}}$ is 2.118 for -01 material, 2.213 for -11 material, and 2.497 for -51 material.
(6) For IHLP-2525EZ-01 - $\mathrm{K}_{\mathrm{f}}=1.181$ and $\mathrm{K}_{\mathrm{b}}=2.166$.

SELECTION PROCESS

Note

- This process assumes that the following is known: Required inductance, frequency, $\mathrm{l}_{\mathrm{DC}}, \Delta \mathrm{II}^{\prime} \mathrm{T}_{\mathrm{AMB}}$, and $\mathrm{V}-\mu \mathrm{s}$ (ET) required.

Step 1. Select inductor value based on controller data sheet recommendation and current (l_{DC}) rating.
Step 2. Determine peak operational flux density in Gauss using equation \#1.
Step 3. Calculate effective frequency using equation \#2.
Step 4. Determine core loss using equation \#3 (see notes \#1 and \#2) and compare to selection criteria \#1.
Step 5. If core losses are $>1 / 3 \mathrm{P}_{\text {HEAT }}$ select a larger inductor.

DEFINITIONS

$E T_{c k t} \quad V-\mu s$ product of the circuit
○ $\mathrm{ET}_{100} \mathrm{~V}$ - μ s product at 100 Gauss from table \#1
■ $\mathrm{P}_{\text {Core }}$ Core losses in W
$\varangle P_{D C}$ Losses due to the $D_{C R}$ of the inductor copper

Step 6. Use selection criteria \#2 to determine allowable copper losses.
Step 7. Determine actual copper losses using equations \#4, \#5 and \#6.
Step 8. Use equation \#7 for total losses.
Step 9. Determine ΔT using equation \#8 and insure $\mathrm{T}_{\text {OPER }} \leq 125^{\circ} \mathrm{C}\left(155^{\circ} \mathrm{C}\right.$ for -51 material) using equation \#9.
Step 10. Verify $I_{\text {PEAK }}$ is less then $I_{\text {SAT }}$ using equation \#10 for the selected part (see selection criteria \#5).
$f_{0} \quad$ Switching frequency in Hz
$\mathrm{R}_{\text {TH }} \quad$ Thermal gradient of IHLP from Table \#1
$\mathrm{f}_{\mathrm{e}} \quad$ Effective frequency in Hz
$\delta \quad$ Duty cycle
$\mathrm{P}_{\mathrm{AC}}-$ Losses in the coil due to AC effects
$\mathrm{K}_{1}-\quad \mathrm{AC}$ loss constant from Table \#1

