

www.vishay.com

Magnetics

Application Note

IHLP Selection Example

INPUT

L _{REQ}	I _{DC}	ΔI	Freq.	T _{AMB}	V-µs	δ
0.54 µH	20 A	7.39 A	300 kHz	50 °C	4.14	0.46

IHLP SELECTED

Step 1.

IHLP-4040DZ-01 0.56 μH											
L	DCR	I _{HEAT}	I _{SAT}	R _{TH}	P _{HEAT}	ET ₁₀₀	K ₀	K ₁			
0.56 µH	0.0017 Ω	30 A	49 A	26.96 °C/W	1.48 W	0.88	18.31	0.00340			

VERIFICATION

Step 2.

$$B_{PK_{OPER}} = \frac{4.14}{0.88} \times 100 = 470.5 \text{ G}$$

Step 3.

 $f_{e} = \frac{300\ 000}{2\pi\ (0.46 - 0.46^{2})} = 192\ 216.1\ Hz$

Step 4.

Step 5.

The core losses are 0.248 W which is less then $^{1}/_{3}$ of P_{HEAT} (0.493 W)

Step 6.

P_{CUallowed} = 1.48 - 0.248 = 1.32 W

Step 7.

$$R_{OPER} = 0.0017 \text{ x} \left[\frac{274.5 + 50}{259.5}\right] = 0.00213 \Omega$$
$$P_{DC} = 20^2 \text{ x} 0.00213 = 0.852 \text{ W}$$

$$P_{AC} = 0.00340 \times 7.39^2 \times \sqrt{300\ 000} \times 0.00213 = 0.217 W$$

Step 8.

Step 9.

P_{TOTAL} = 0.248 + 0.852 + 0.217 = 1.317 W

∆T = 1.317 x 26.96 = 35.51 °C T_{OPER} = 50 + 35.51 = 85.51 °C

Step 10.

$$\mathsf{I}_{\mathsf{PEAK}} = 20 + \frac{7.39}{2} = 23.7 \text{ A}$$

 $I_{SAT} = 49$ A which is greater then the required 23.7 A 1

Revision: 20-Mar-13

Document Number: 34252

IHLP Selection Example

SELECTION CRITERIA

- 1. Limit core losses (P_{CORE}) to $\leq 1/3$ of total losses for 40 °C temperature rise (P_{HEAT}).
- 2. Total copper losses allowed will be equal to P_{HEAT} P_{CORE}.
- 3. Maximum component temperature should be kept \leq 125 °C, 155 °C for -51 components.
- 4. Maximum Δ T should be \leq 40 °C (this can be exceeded provided caution is taken to insure max. temperature \leq 125 °C/155 °C).
- 5. I_{PEAK} ≤ I_{SAT} (recommended, I_{PEAK} can exceed I_{SAT} with caution due to soft saturation of IHLP product).

GOVERNING EQUATIONS

1.
$$B_{PK_{OPER}} = \frac{ET_{ckt}}{ET_{100}} \times 100$$
 [G]

2.
$$f_e = \frac{f_0}{2\pi (\delta - \delta^2)}$$
 [Hz]

- 3. $P_{CORE} = K_0 f_e^{K_f 1} B_{pk}^{Kb} x f_0 x 10^{-14} [W]$
- 4. $P_{AC} = K_1 \times \Delta I^2 \times \sqrt{f_0} \times R_{OPER}$ [W]

5.
$$R_{OPER} = R_{TYP.} x \left[\frac{274.5 + T_{AMB}}{259.5} \right]$$
 [A]

- 6. $P_{DC} = I_{DC}^2 x R_{OPER}$ [W]
- 7. $P_{TOTAL} = P_{CORE} + P_{DC} + P_{AC}$ [W]
- 8. $\Delta T = P_{TOTAL} \times R_{TH}$ [°C]
- 9. $T_{OPER} = T_{AMB} + \Delta T$ [°C]
- 10. $I_{PEAK} = I_{DC} + \frac{\Delta I}{2}$ [A]

Notes

- ⁽¹⁾ Equation #5 assumes a 40 °C temperature rise and will have the same units as R_{TYP.}
- ⁽²⁾ For equations #3 f in Hz and B_{PK} in G.
- ⁽³⁾ R_{OPER} is based on a 40 °C temperature rise.
- $^{(4)}$ K_f is 1.188 for -01 material, 1.173 for -11 material, and 1.044 for -51 material.
- ⁽⁵⁾ K_b is 2.118 for -01 material, 2.213 for -11 material, and 2.497 for -51 material.
- ⁽⁶⁾ For IHLP-2525EZ-01 $K_f = 1.181$ and $K_b = 2.166$.

SELECTION PROCESS

Note

- This process assumes that the following is known: Required inductance, frequency, I_{DC}, ΔI, T_{AMB}, and V-µs (ET) required.
- **Step 1.** Select inductor value based on controller data sheet recommendation and current (I_{DC}) rating.
- **Step 2.** Determine peak operational flux density in Gauss using equation #1.
- Step 3. Calculate effective frequency using equation #2.
- **Step 4.** Determine core loss using equation #3 (see notes #1 and #2) and compare to selection criteria #1.
- □ Step 5. If core losses are > 1/3 P_{HEAT} select a larger inductor.

0

٩

Z DEFINITIONS

- \ge ET_{ckt} V-µs product of the circuit
- O ET₁₀₀ V-μs product at 100 Gauss from table #1
- P_{CORE} Core losses in W
- P_{DC} Losses due to the D_{CR} of the inductor copper winding in W
- K₀ IHLP core constant from table #1

- Step 6. Use selection criteria #2 to determine allowable copper losses.
- Step 7. Determine actual copper losses using equations #4, #5 and #6.
- **Step 8.** Use equation #7 for total losses.
- Step 9. Determine ΔT using equation #8 and insure $T_{OPER} \le 125$ °C (155 °C for -51 material) using equation #9.
- **Step 10.** Verify I_{PEAK} is less then I_{SAT} using equation #10 for the selected part (see selection criteria #5).
- f₀ Switching frequency in Hz
- R_{TH} Thermal gradient of IHLP from Table #1
- fe Effective frequency in Hz
- δ Duty cycle
- PAC- Losses in the coil due to AC effects
- K₁- AC loss constant from Table #1

Revision: 20-Mar-13

Document Number: 34252