

Vishay

12 x 2 Character LCD

FEATURES

- Type: Character
- Display format: 12 x 2 characters
- Built-in controller: HD44780 (or equivalent)
- Duty cycle: 1/16
- 5 x 8 dots includes cursor
- + 5 V power supply
- LED can be driven by pin 1, pin 2, or A and K
- Compliant to RoHS Directive 2002/95/EC

MECHANICAL DATA						
ITEM	STANDARD VALUE	UNIT				
Module Dimension	55.7 x 32.0 x 9.7 (max.)					
Viewing Area	46.0 x 14.5					
Dot Size	0.45 x 0.60					
Dot Pitch	0.55 x 0.70	mm				
Mounting Hole	31.2 x 30.0					
Character Size	2.65 x 5.50					

ABSOLUTE MAXIMUM RATINGS							
ITEM	SYMBOL	STAN	ALUE	UNIT			
	STMDOL	MIN.	TYP.	MAX.	UNIT		
Power Supply	V_{DD} to V_{SS}	- 0.3	-	7.0			
Power Supply	V_{DD} to V_0	- 0.3	-	13.0	V		
Input Voltage	VI	V _{SS}	-	V _{DD}			
Note	V	VSS	_	• DD			

Note

• $V_{SS} = 0 V, V_{DD} = 5.0 V$

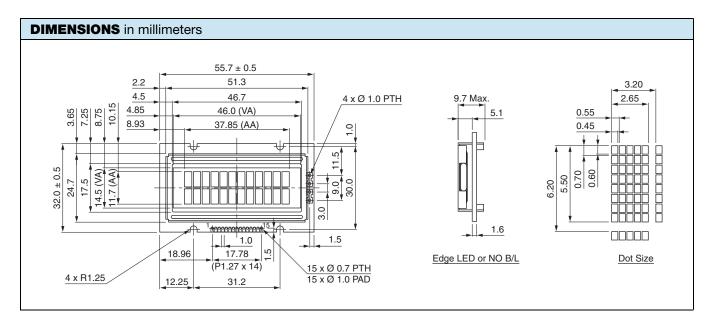
ELECTRICAL CHARACTERISTICS						
ITEM	SYMBOL	CONDITION	ST	ANDARD VA	LUE	UNIT
	STMBOL	CONDITION	MIN.	TYP.	MAX.	
Input Voltage	V _{DD}	$V_{DD} = +5 V$	4.5	5.0	5.5	V
Supply Current	I _{DD}	$V_{DD} = +5 V$	-	1.2	-	mA
		- 20 °C	-	-	5.7	v
Recommended LC Driving		0°C	-	-	-	
Voltage for Normal Temperature	V_{DD} to V_0	25 °C	-	4.2	-	
Version Module		50 °C	-	-	-	
		70 °C	3.5	-	-	
LED Supply Voltage	V	n/a	-	-	-	V
LED Supply Current	I _{LED}	n/a	-	-	-	mA

DISPLAY CHAR	DISPLAY CHARACTER ADDRESS CODE											
Display Position												
	1	2	3	4	5	6	7	8	9	10	11	12
DD RAM Address	00	01	02	03	04	05	06	07	08	09	0A	0B
DD RAM Address	40	41	42	43	44	45	46	47	48	49	4A	4B
BB TR WIT Real 666	10		12	10		10	10		10	10		

RoHS COMPLIANT

Revision: 20-Jul-11

Document Number: 37404


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

www.vishay.com

Vishay

INTERFACE PIN FUNCTION						
PIN NO.	SYMBOL	FUNCTION				
1	V _{SS}	Ground				
2	V _{DD}	+ 5 V supply voltage for logic				
3	V ₀	Operating voltage for LCD (variable)				
4	RS	H/L; H: data/L: instruction code				
5	R/W	H/L; H: read (MPU \rightarrow module)/L: Write (MPU \rightarrow module)				
6	E	H, H \rightarrow L chip enable signal				
7	DB0	H/L data bus line				
8	DB1	H/L data bus line				
9	DB2	H/L data bus line				
10	DB3	H/L data bus line				
11	DB4	H/L data bus line				
12	DB5	H/L data bus line				
13	DB6	H/L data bus line				
14	DB7	H/L data bus line				
15	A	NC				

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

1.Module Classification Information

<i>LCD- θ</i>	12 N	002	A -N	G	G	<i>-ET</i>	
1	2 3	4	5 6	\bigcirc	8	9	
1. Brand : Visha	y Intertechnolog	gy, Inc.					
2. Horizontal For	rmat: 12 charac	cters					
3. Display Type	: N→Character	Type, H→Grap	hic Type				
4. Vertical Forma							
5. Model serials							
6. Backlight	$N \rightarrow Without b$	e	T→LED,				
Type :	$B \rightarrow EL$, Blue g		$A \rightarrow LED$, ,			
	$D \rightarrow EL$, Green		$R \rightarrow LED$,				
	$W \rightarrow EL$, Whit		$O \rightarrow LED$	e			
	F→CCFL, Wł		$G \rightarrow LED$, Green			
	Y→LED, Yell						
7. LCD Mode :	$B \rightarrow TN$ Positiv		$T \rightarrow FSTN$ Negative				
	$N \rightarrow TN$ Negat	·					
	G→STN Posit	· ·					
		tive, Yellow Gr	een				
	$M \rightarrow STN Neg$,					
	$F \rightarrow FSTN Pos$			A T	T (00		
8. LCD Polarize		· · ·		sflective, W			
Type/ Temperature range/ View	2 11011001110	· · ·	$K \rightarrow$ Transflective, W.T,12:00				
direction	G→Reflective	· · · ·	C→Transmissive, N.T,6:00				
	$J \rightarrow Reflective,$	<i>,</i>	F→Transmissive, N.T,12:00 I→Transmissive, W. T, 6:00				
	$B \rightarrow Transflect$				·		
$0 C = C = \frac{1}{2} \left[C 1 C 1 \right]$		ive, N.T.12:00		missive, W.	1,12:00		
9. Special Code	U	1	standard font; Directions and regulations				
	Compnance w		Jucctions al	nu regulatio	115		

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

2.Precautions in use of LCD Modules

- (1)Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2)Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3)Don't disassemble the LCM.
- (4)Don't operate it above the absolute maximum rating.
- (5)Don't drop, bend or twist LCM.
- (6)Soldering: only to the I/O terminals.
- (7)Storage: please storage in anti-static electricity container and clean environment.

Item	Dimension	Unit
Number of Characters	12 characters x 2 Lines	—
Module dimension	55.7 x 32.0 x 9.7(MAX)	mm
View area	46.0 x 14.5	mm
Active area	37.85 x 11.7	mm
Dot size	0.45 x 0.60	mm
Dot pitch	0.55 x 0.70	mm
Character size	2.65 x 5.50	mm
Character pitch	3.20 x 6.20	mm
LCD type	STN Positive, Gray Reflective,	
Duty	1/16	
View direction	6 o'clock	
Backlight Type	Without backlight	

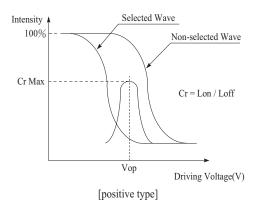
3.General Specification

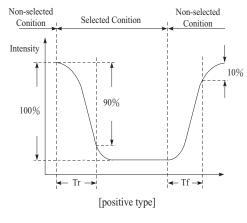
4.Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	T _{OP}	-20		+70	°C
Storage Temperature	T _{ST}	-30	_	+80	°C
Input Voltage	VI	V _{SS}	—	V _{DD}	V
Supply Voltage For Logic	V_{DD} - V_{SS}	-0.3	—	7	V
Supply Voltage For LCD	V _{DD} -V ₀	-0.3		13	V

5.Electrical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V _{DD} -V _{SS}	—	4.5	5.0	5.5	V
		Ta=-20°℃		—	5.7	V
Supply Voltage For LCD	V_{DD} - V_0	Ta=25℃	_	4.2	—	V
		Ta=70°C	3.5	—	—	V
Input High Volt.	V _{IH}	—	0.7Vdd	_	V _{DD}	V
Input Low Volt.	V _{IL}	—	V_{SS}	—	0.6	V
Output High Volt.	V _{OH}	—	3.9	—	_	V
Output Low Volt.	V _{OL}	—	—	_	0.4	V
Supply Current	I _{DD}	V _{DD} =5V	—	1.2	_	mA

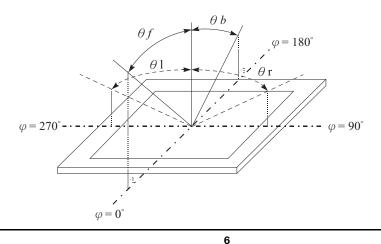

Vishay


6.Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	$(V) \theta$	CR≧2	20		40	deg
	(H) φ	$CR \ge 2$	-30	_	30	deg
Contrast Ratio	CR	—	_	3	_	_
Response Time	T rise	—	_	150	200	ms
	T fall	—	—	150	200	ms

Definition of Operation Voltage (Vop)

Definition of Response Time (Tr, Tf)



Conditions :

Operating Voltage : Vop Frame Frequency : 64 HZ

Viewing Angle($\theta \cdot \phi$): $0^{\circ} \cdot 0^{\circ}$ Driving Waveform: 1/N duty, 1/a bias

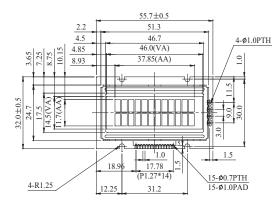
Definition of viewing angle(CR \geq 2)

For technical questions, contact: displays@vishay.com

Document Number: 37404

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay

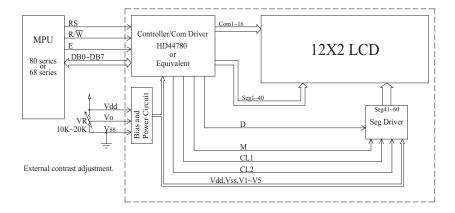

7.Interface Pin Function

Pin No.	Symbol	Level	Description
1	V _{SS}	0V	Ground
2	V _{DD}	5.0V	Supply Voltage for logic
3	VO	(Variable)	Operating voltage for LCD
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU \rightarrow Module) L: Write(MPU \rightarrow Module)
6	Е	H,H→L	Chip enable signal
7	DB0	H/L	Data bus line
8	DB1	H/L	Data bus line
9	DB2	H/L	Data bus line
10	DB3	H/L	Data bus line
11	DB4	H/L	Data bus line
12	DB5	H/L	Data bus line
13	DB6	H/L	Data bus line
14	DB7	H/L	Data bus line
15	А	_	NC

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

8.Contour Drawing & Block Diagram

Vss
Vdd
Vo
RS
R/W
Е
DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7
А


LED or NO B/L

3.20 2.65 0.55 0.45 0.60 0.70 .50 .20

DOT SIZE

The non-specified tolerance of dimension is ± 0.3 mm.

1 2 3 4 5 6 7 8 9 10 11 12 Character located DDRAM address 00 01 02 03 04 05 06 07 08 09 0A 0B DDRAM address 40 41 42 43 44 45 46 47 48 49 4A 4B

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

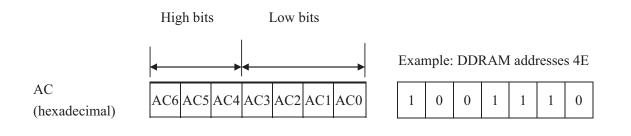
9.Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB7)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)


When the busy flag is 1, the controller LSI is in the internal operation mode, and the next instruction will not be accepted. When RS=0 and R/W=1, the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0.

Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM

Display Data RAM (DDRAM)

This DDRAM is used to store the display data represented in 8-bit character codes. Its extended capacity is 80x8 bits or 80 characters. Below figure is the relationships between DDRAM addresses and positions on the liquid crystal display.

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Display position DDRAM address

1 2 3 4 5 6 7 8 9 10 11	1	2	3	4	5	6	7	8	9	10	11	1
-------------------------	---	---	---	---	---	---	---	---	---	----	----	---

00	01	02	03	04	05	06	07	08	09	0A	0B		
40	41	42	43	44	45	46	47	48	49	4A	4B		

2-Line by 12-Character Display

Character Generator ROM (CGROM)

The CGROM generate 5×8 dot or 5×10 dot character patterns from 8-bit character codes. See Table 2.

Character Generator RAM (CGRAM)

In CGRAM, the user can rewrite character by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Character patterns

Table 1.

For 5 * 8 dot character patterns

Character Codes (DDRAM data)	CGRAM Address	Character Patterns (CGRAM data)	
7 6 5 4 3 2 1 0	5 4 3 2 1 0	7 6 5 4 3 2 1 0	
High Low	High Low	High Low	
0 0 0 0 * 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0 * * * 0 0 0	Character pattern(1) Cursor pattern
0 0 0 0 * 0 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* * * 0 0 0 0 * * * 0 0 0 0 0 * * * 0 0 0 0 0 * * * 0 0 0 0 0 * * * 0 0 0 0 0 * * * 0 0 0 0 0 * * * 0 0 0 0 0 * * * 0 0 0 0 0	Character pattern(2) Cursor pattern
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	* * *	
0 0 0 0 * 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* * *	

For 5 * 10 dot character patterns

Character Codes (DDRAM data)	CGRAM	I Address	Character Patterns (CGRAM data)	
7 6 5 4 3 2 1 0	54	3 2 1 0	7 6 5 4 3 2 1 0	
High Low	High	Low	High Low	
0 0 0 0 * 0 0 0	0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} * & * & * & 0 & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 \\ * & * & * & * & 0 & 0 & 0 \\ * & * & * & * & 0 & 0 & 0 \\ * & * & * & * & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 \\ \end{array}$	Character pattern Cursor pattern
		1 1 1 1	* * * * * * * *	

🔳 : " High "

Revision: 20-Jul-11

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

10.Character Generator ROM Pattern

Table.2

Upper																
4 bit Lower 4 bit	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	нннн
LLLL	CG RAM (1)	*****									•			 		···
LLLH	CG RAM (2)											10. 10	•,•		**** ***	1>
LLHL	CG RAM (3)			*****				1			,	# ¹⁴ 11	:::)			
LLHH	CG RAM (4)			••••	, ,	***** *****	***** ****	****	•;;;]	,		•			ļ	·[.
LHLL	CG RAM (5)		38	d.)	•••				•*	÷			ЮI
LHLH	CG RAM (6)	1		·		II		II		••			•]*•			
LHHL	CG RAM (7)		É.!	E.,		I.,I	**	I[•			•	•.[.•			
LHHH	CG RAM (8)		-				•	I_:.]	•••••	•. !!			···.]•	; [*] :	l.,	11]
HLLL	CG RAM (1)		1				!-** ₁	[:-:]			.,[``	****	-Ę	****	ŀ:	
HLLH	CG RAM (2)			·)		۱. ,۱]		•								÷
HLHL	CG RAM (3)	•*•* •*•*	* . . * * .		***		***							*****	.	
HLHH	CG RAM (4)		••]••					•		 	-	•••••			I,.P	
HHLL	CG RAM (5)			•		**••			,*. 	****						
HHLH	CG RAM (6)	•*•_•		*****				••• •••	**		****		H H			
HHHL	CG RAM (7)				•••			•*••				***				
НННН	CG RAM (8)		·** ^{**}				I)			=					! <u>.</u> !	

Document Number: 37404

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

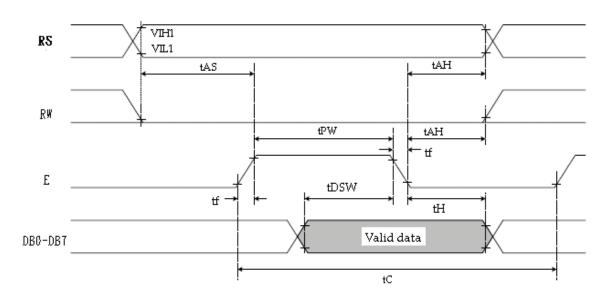
Vishay

11.Instruction Table

Instruction				Ins	structi	ion Co	ode				Description	Execution time
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270Khz)
Clear Display	0	0	0	0	0	0	0	0	0	1	Write "00H" to DDRAM and set DDRAM address to "00H" from AC	1.53ms
Return Home	0	0	0	0	0	0	0	0	1	_	Set DDRAM address to "00H" from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39 µ s
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	39 µ s
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	_	_	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39 µ s
Function Set	0	0	0	0	1	DL	N	F	_	_	Set interface data length (DL:8-bit/4-bit), numbers of display line (N:2-line/1-line)and, display font type (F:5×11 dots/5x8 dots)	39 µ s
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39 μ s
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39 µ s
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF. The contents of address counter can also be read.	0 μ s
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43 μ s
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43 μ s

* "-": don't care

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000



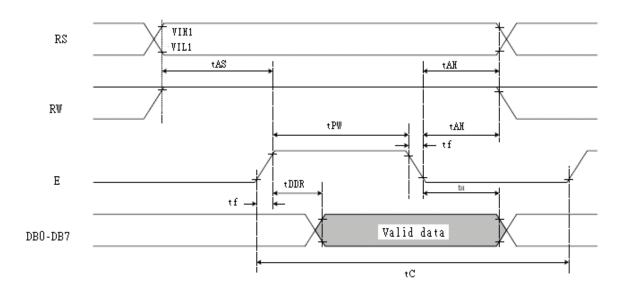
Vishay

12. Timing Characteristics

12.1 Write Operation

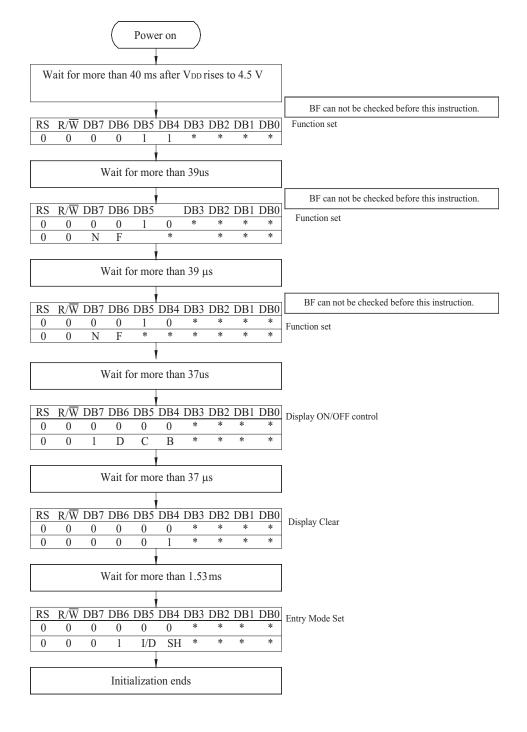
• Writing data from MPU

Ta=25℃,	VDD=5.0V

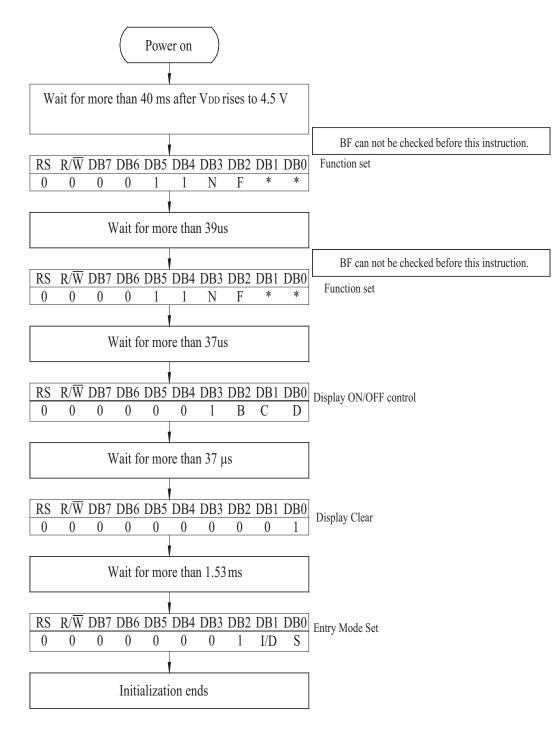

Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	T _C	1200	_	_	ns
Enable pulse width	T _{PW}	140	—	—	ns
Enable rise/fall time	T_R, T_F	_	_	25	ns
Address set-up time (RS, R/W to E)	t_{AS}	0	_	_	ns
Address hold time	t _{AH}	10	_	_	ns
Data set-up time	t _{DSW}	40			ns
Data hold time	t _H	10	_	_	ns

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

12.2 Read Operation


Reading data from ST7066U

					Ta=25°C, VDD=5V
Item	Symbol	Min	Тур	Max	Unit
Enable cycle time	T _C	1200	_	_	ns
Enable pulse width (high level)	T _{PW}	140	_	_	ns
Enable rise/fall time	T_R, T_F	_	_	25	ns
Address set-up time (RS, R/W to E)	t _{AS}	0			ns
Address hold time	t_{AH}	10			ns
Data delay time	t _{DDR}	_	_	100	ns
Data hold time	t_{H}	10	_	_	ns


13.Initializing of LCM

4-Bit Interface

www.vishay.com

Vishay

8-Bit Interface

14.Reliability

Content of Reliability Test (wide temperature, -20°C~70°C)

	Environmental Test		
Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80°C 200hrs	2
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-30°C 200hrs	1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	70℃ 200hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-20°C 200hrs	1
High Temperature/ Humidity Operation	The module should be allowed to stand at 60 °C,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60℃,90%RH 96hrs	1,2
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -20°C 25°C 70°C 30n	-20°C /70°C 10 cycles	
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude : 1.5mm Vibration Frequency : 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1.5k Ω CS=100pF 1 time	

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal

Temperature and humidity after remove from the test chamber.

Note3: Vibration test will be conducted to the product itself without putting it in a container.

Revision: 20-Jul-11

www.vishay.com

Vishay

15. Inspection specification

NO	Item	Criterion	AQL						
01	Electrical Testing	 1.1 Missing vertical, horizontal segment, segment contrast defect. 1.2 Missing character , dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 LCD viewing angle defect. 1.7 Mixed product types. 1.8 Contrast defect. 							
02	Black or white spots on LCD (display only)	 2.1 White and black spots on display ≤0.25mm, no more than three white or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm 	2.5						
03	LCD black spots, white spots, contamination (non-display)	3.1 Round type : As following drawing $\Phi = (x + y) / 2$ $\Psi = 0.10$ Accept no dense $0.10 < \Phi \le 0.20$ 2 $0.20 < \Phi \le 0.25$ 1 $0.25 < \Phi$ 0 3.2 Line type : (As following drawing) $\frac{\text{Length}}{\text{Width}} = 0.02$ Accept no dense $\frac{\text{L} \le 3.0}{\text{L} \le 2.5} = 0.03 < W \le 0.03$ 2 $\frac{\text{L} \le 2.5}{\text{L} \le 0.03 < W \le 0.05}$ 2	2.5						
04	Polarizer bubbles	If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.Size Φ Acceptable Q TY $\Phi \leq 0.20$ Accept no dense $0.20 < \Phi \leq 0.50$ 3 $0.50 < \Phi \leq 1.00$ 2 $1.00 < \Phi$ 0Total Q TY3	2.5						

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Y_∞ www.vishay.com

SHA

Vishay

Item Scratches	Criterion Follow NO.3 LCD black spots, white spots, contamination	AQL		
Chipped glass	Symbols Define: x: Chip hngth y: Chip width z: Chip thickness k: Seal width t: Glass thickness a: LCD side length L: Electrode pad length: 6.1 General glass chip : 6.1.1 Chip on panel surface and crack between panels: Image: Seal width x: Chip on panel surface and crack between panels: Image: Seal width x: Chip on panel surface and crack between panels: Image: Seal width x: Chip thickness y: Chip width x: Chip length Z: Chip thickness y: Chip width x: Chip length Z \le 1/2t Not over viewing area x \le 1/8a 1/2t < z \le 2t	2.5		
	$\frac{1}{1/2t} < z \le 2t$ Not exceed 1/3k $x \le 1/8a$			
		6.1 General glass chip : 6.1.1 Chip on panel surface and crack between panels:Image: chip of the second		

Vishay

NO	Item	Criterion	AQL			
NO 06	Item	Criterion Symbols : x: Chip bength y: Chip width z: Chip thickness k: Seal width t: Glass thickness a: LCD side length L: Electrode pad length 6.2 Protrusion over terminal : 6.2.1 Chip on electrode pad : i i j				
		$y \le 0.5 \text{mm}$ $x \le 1/8a$ $0 < z \le t$ 6.2.2 Non-conductive portion: y y y y x x y x x y x y x y x y x y y x y y x y x y x y y x y y x y y z x y z z y z <td< td=""><td>2.5</td></td<>	2.5			
		 ⊙ If the product will be heat sealed by the customer, the alignment mark not be damaged. 6.2.3 Substrate protuberance and internal crack. y: width x: length y ≤ 1/3L x ≤ a 				

Vishay

NO	Item	n Criterion			
07	Cracked glass	The LCD with extensive crack is not acceptable.			
08	Backlight elements	 8.1 Illumination source flickers when lit. 8.2 Spots or scratched that appear when lit must be judged. Using LCD spot, lines and contamination standards. 8.3 Backlight doesn' t light or color wrong. 			
09	Bezel	9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination.9.2 Bezel must comply with job specifications.			
10	РСВ 、 СОВ	 10.1 COB seal may not have pinholes larger than 0.2mm or contamination. 10.2 COB seal surface may not have pinholes through to the IC. 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. 10.4 There may not be more than 2mm of sealant outside the seal area on the PCB. And there should be no more than three places. 10.5 No oxidation or contamination PCB terminals. 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 10.7 The jumper on the PCB should conform to the product characteristic chart. 10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw hold pad, make sure it is smoothed down. 10.9 The Scraping testing standard for Copper Coating of PCB 	 2.5 2.5 0.65 2.5 0.65 0.65 2.5 2.5 2.5 		
11	11.1 No un-melted solder paste may be present on the PCB. 11.2 No cold solder joints, missing solder connections, oxidation or icicle. Soldering 11.3 No residue or solder balls on PCB. 11.4 No short circuits in components on PCB.		2.5 2.5 2.5 0.65		

Revision: 20-Jul-11

Document Number: 37404

www.vishay.com

Vishay

NO	Item Criterion		
12	General appearance	 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 12.2 No cracks on interface pin (OLB) of TCP. 12.3 No contamination, solder residue or solder balls on product. 12.4 The IC on the TCP may not be damaged, circuits. 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it cause the interface pin to sever. 12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color. 12.7 Sealant on top of the ITO circuit has not hardened. 12.8 Pin type must match type in specification sheet. 12.9 LCD pin loose or missing pins. 12.10 Product packaging must the same as specified on packaging specification sheet. 12.11 Product dimension and structure must conform to product specification sheet. 	2.5 0.65 2.5 2.5 2.5 2.5 2.5 2.5 0.65 0.65 0.65 0.65

16. Material List of Components for RoHS

1. Declaration that all of or part of products (with the mark "N" in code), including, but not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.

Exhibit A: The Harmful Material List

Material	(Cd)	(Pb)	(Hg)	(Cr6+)	PBBs	PBDEs
Limited Value	100 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm
Above limited value is set up according to RoHS.						

2.Process for RoHS requirement :

(1) Use the Sn/Ag/Cu soldering surface ; the surface of Pb-free solder is rougher than we used before.

(2) Heat-resistance temp. :

Reflow : 250C, 30 seconds Max. ;

Connector soldering wave or hand soldering : 320C, 10 seconds max.

(3) Temp. curve of reflow, max. Temp. : 235C±5 degrees ;

Recommended customer's soldering temp. of connector : 280C, 3 seconds.