

RADIAL-LEADED MULTILAYER CERAMIC CAPACITORS

K...H Series

High Operating Temperature, Radial-Leaded Multilayer Ceramic Capacitors for Automotive Applications, 50 V_{DC} , 100 V_{DC} , 200 V_{DC}

KEY BENEFITS

- AEC-Q200 qualified with PPAP available
- High reliability MLCC insert with wet build process and noble metal electrodes
- High operating temperature up to 200 °C
- Temperature characteristics:
 C0G (± 30 ppm/K within -55 °C to +175 °C), and
 X0U (+22 % / -56 % within -55 °C to +175 °C)
- · High capacitance with small size
- Crimp and straight lead styles

APPLICATIONS

EMI filtering in:

- Automotive sensors (Hall sensors, exhaust gas sensors...)
- Cable harnesses
- Automotive DC motors / actuators (throttle valve motor, brake systems, turbo charger, air management)

RESOURCES

- Datasheet: K...H Series www.vishay.com/doc?45211
- For technical questions, contact <u>cmll@vishay.com</u>
- Material categorization: for definitions, please see <u>www.vishay.com/doc?99912</u>

RADIAL-LEADED MULTILAYER CERAMIC CAPACITORS

K...H Series

High Operating Temperature, Radial-Leaded Multilayer Ceramic Capacitors for Automotive Applications, 50 V_{DC}, 100 V_{DC}, 200 V_{DC}

FEATURES

- Registered trademark HOTcap®
- AEC-Q200 qualified with PPAP available
- High reliability MLCC insert with wet build process
- High operating temperature up to 200 °C ⁽¹⁾
- Available in class 1 and class 2
- · High capacitance with small size
- Radial mounting style
- · Crimp and straight leadstyles
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

AUTOMOTIVE

RoHS

HALOGEN FREE

FREE

APPLICATIONS

Automotive applications up to 200 °C ⁽¹⁾

Note

 $^{(1)}$ 200 °C for max. 500 hours and 175 °C unlimited time

QUICK REFERENCE DATA						
DESCRIPTION	VALUE					
Ceramic Class	1			2		
Ceramic Dielectric	COG			X0U		
Voltage (V _{DC})	50	100	200	50	100	200
Min. Capacitance (pF)	100	100	100	10 000	10 000	10 000
Max. Capacitance (pF)	12 000	12 000	8200	1 000 000	470 000	180 000
Mounting	Radial					

MARKING

Marking indicates capacitance value and tolerance in accordance with "EIA 198".

OPERATING TEMPERATURE RANGE

-55 °C to +175 °C unlimited time -55 °C to +200 °C for max. 500 hours Voltage derating above 150 °C

TEMPERATURE CHARACTERISTICS

Class 1: C0G (± 30 ppm/K within -55 °C to +200 °C) Class 2: X0U also fullfilling X7R and X9V criteria X7R (+15 % / -15 % within -55 °C to +125 °C) X0U (+22 % / -56 % within -55 °C to +175 °C) X9V (+22 % / -82 % within -55 °C to +200 °C)

SECTIONAL SPECIFICATIONS

Climatic category (acc. to EN 60058-1) 55 / 125 / 21

APPROVALS

EIA 198 IEC 60384-8 IEC 60384-9 AEC-Q200

DISSIPATION FACTOR

Class 1: 0.1 % max.

 $(C \le 1000 \text{ pF, at 1 MHz, 1 V; C} > 1000 \text{ pF, at 1 kHz, 1 V})$

Class 2: 2.5 % max. (at 1 kHz, 1 V)

DESIGN

- The capacitors consist of a high reliability MLCC
- Leads wires are 0.5 mm or 0.6 mm and are made of 100 % tinned copper clad steel wire
- The capacitors may be supplied with straight or kinked leads having a lead spacing of 2.5 mm and 5.0 mm
- Coating is made of flame retardant epoxy resin in accordance with UL 94 V-0

CAPACITANCE RANGE

100 pF to 1 μ F

TOLERANCE ON CAPACITANCE

 \pm 5 %, \pm 10 %, \pm 20 %

RATED VOLTAGE

 $50 V_{DC}$, $100 V_{DC}$, $200 V_{DC}$

TEST VOLTAGE

- 50 V_{DC} and 100 V_{DC}: 250 % of rated voltage
- \bullet 200 $V_{\text{DC}}\!\!:$ 200 % of rated voltage

INSULATION RESISTANCE

- 50 V_{DC}, 100 V_{DC}: 100 G Ω or 1000 Ω F whichever is less at rated voltage within 2 min of charging
- 200 V_{DC} : 10 $G\Omega$ or 100 ΩF whichever is less at rated voltage within 2 min of charging