

Open-Mode Design MLCC Capacitors

KEY BENEFITS

- Reduces the risk of shorts or low insulation resistance (IR) due to board-flex cracks
- Available with polymer terminations for intensive board flex requirements
- Features higher voltage breakdowns than standard designs with voltage ranges from 16 V_{DC} to 3000 V_{DC}
- Provides high-frequency filtering for switching power supplies
- Available with 100 % voltage condition

APPLICATIONS

• Buck and boost DC/DC converters

ROHS HALOGEN

COMPLIANT FREE

- Voltage multipliers for flyback converters
- High-frequency filtering in power supplies for medical, computer, motor control, and telecommunications systems

RESOURCES

- Datasheet: VJ OMD Series <u>http://www.vishay.com/doc?45198</u>
- For technical questions contact <u>mlcc@vishay.com</u>
- Material categorization: For definitions of compliance please see http://www.vishay.com/doc?99912

PRODUCT SHEET

VMN-PT0049-1205

One of the World's Largest Manufacturers of

Discrete Semiconductors and Passive Components

Surface Mount Multilayer Ceramic Chip **Capacitor Solutions for Boardflex Sensitive Applications**

COG (NPO)	X7R	
GENERAL SPECIFICATION Note Electrical characteristics at + 25 °C	GENERAL S Note Electrical chara	
Operating Temperature: - 55	Operating T	
Capacitance Range: 10 pF to	47 nF	Capacitance
Voltage Range: 50 V _{DC} to 300	0 V _{DC}	Voltage Ran
Temperature Coefficient of C 0 ppm/°C ± 30 ppm/°C from -	Temperature ± 15 % from	
Dissipation Factor (DF): 0.1 % maximum at 1.0 V _{RMS} at 1 MHz for values ≤ 1000 pF 0.1 % maximum at 1.0 V _{RMS} at 1 kHz for values > 1000 pF	Dissipation I < 50 V ratings ≥ 50 V ratings Insulating R	
Insulating Resistance: At + 25 °C 100 000 MΩ min. or At + 125 °C 10 000 MΩ min. or	1000 Ω F whichever is less 100 Ω F whichever is less	At + 125 °C 1 At + 125 °C 1
Aging Rate: 0 % maximum pe	Dielectric St	
Dielectric Strength Test: Performed per method 103 of I Applied test voltages 200 Vp_c-rated: 500 Vp_c-rated: 630 Vp_c/1000 Vp_c-rated: 1500 Vp_c to 3000 Vp_rated:	Performed per Applied test v ≤ 250 V _{DC} -rat 500 V _{DC} -rate 630 V _{DC} /1000 1500 V _{DC} to 3	

ELECTRICAL SPECIFICATIONS

PECIFICATION

acteristics at + 25 °C unless otherwise specified

emperature: - 55 °C to + 125 °C

e Range: 100 pF to 1.8 uF

nge: 16 V_{DC} to 3000 V_{DC}

re Coefficient of Capacitance (TCC): 1 - 55 °C to + 125 °C, with 0 V_{DC} applied

Factor (DF): s 3.5 % maximum at 1.0 V_{RMS} and 1 kHz s 2.5 % maximum at 1.0 V_{RMS} and 1 kHz

10 000 M Ω min. or 1000 Ω F whichever is less 10 000 M Ω min. or 100 Ω F whichever is less

1 % maximum per decade

trength Test: per method 103 of EIA 198-2-E voltages 250 % of rated voltage min. 150 % of rated voltage 150 % of rated voltage ted: ed: 0 Vpc-rated: 3000 V_{DC}-rated: 120 % of rated voltage

ORDERING INFORMATION									
VJ1210	Y	474	J	х	Α	Α	т	# (2)	
CASE CODE	DIELECTRIC	CAPACITANCE	CAPACITANCE TOLERANCE	TERMINATION	DC VOLTAGE	MARKING	PACKAGING	PROCESS CODE	
		CODE			RATING (1)				
0805	A = C0G	Expressed in	F = ± 1 %	X = Ni barrier	J = 16 V	A =		4X =	
1206	(NP0)	picofarads (pF).	G = ± 2 %	100 % tin plated	X = 25 V	Unmarked		OMD cap	
1210	Y = X7R	The first two	J = ± 5 %	matte finish	A = 50 V	I		5H =	
1808		digits are	K = ± 10 %	F, E = AgPd ⁽³⁾	B = 100 V	C = 7" reel/paper tape T = 7" reel/plastic tape P = 11 1/4"/13" reel/		OMD	
1812		significant, the	M = ± 20 %	B = Polymer	C = 200 V			cap 100 %	
1825		third is a	Note	100 % tin plated	P = 250 V			voltage	
2220		multiplier. An "R"	C0G (NP0):	matte finish	E = 500 V	pap	per tape	conditioning	
2225		indicates a	F, G, J, K	N =	L = 630 V	R = 11 1/4"/13" reel/			
		decimal point.	X7R:	Non-magnetic	G = 1000 V	plas	stic tape		
		Examples	J, K, M	· · · · · ·	R = 1500 V	O = 7"	reel/flamed		
474 = 470 000 pF					F = 2000 V	pap	per tape		
(1) DO unlines the state of the superclass $H = 3000 V$						1	Note		
Other application factors may affect the MLCC performance						"I" and "C	" are used for		
Consult for questions: mlcc@vishav.com							"F", "E" termination		
⁽²⁾ Process code with 2 digits has to be added							e 0805	1	
(3) Termination code F" is for conductive enoxy assembly									

BOARDFLEX SENSITIVE APPLICATIONS - SOLUTION:

A predominant failure mode in multilayer ceramic chip capacitors is cracking caused by board flexure. Cracks can then create a path for current to pass from one electrode through the dielectric to an opposing electrode or from the terminations at one end of the MLCC through the dielectric to an opposing electrode. This may subsequently result in capacitance loss, leakage low Insulation Resistance (IR) - and/or more seriously, high current shorts. A short circuit condition in the surface mounted capacitors can cause further failures of downstream components. Vishay's Open Mode Design Capacitors (VJ OMD - Cap. series) reduce the risk of these destructive conditions through MLCC designs that prevent board flexure cracks reaching the opposing electrode.

VJ OMD - Cap. MLCCs reduce the risk of early field failures associated with board flex cracks. However, it is important to note that even in the open mode designs the presence of flexure related cracks can cause capacitance loss leading to localized stresses on the parts. eventually, depending on the application environment, including such factors and high voltage pulse frequency and thermal cycling this may lead to internal breakdown of the component.

POLYMER TERMINATION

Polymer termination provides additional protection against board flexure damage by absorbing greater mechanical and thermal stresses. Components can be packaged, transported, stored and handled the same standard terminated product. Wave and reflow soldering of MLCC does not require modification to equipment and/or process. Polymer termination greatly reduces the risk of mechanical cracking however it does not completely eliminate

PRODUCT SHEET

Revision 17-Feb-12