Belobog Package
 Window Size in Front of the IR Receiver Module

Fig. 1

The window in front of the receiver should be sized in order to optimize the required viewing angle. A formula to calculate the optimal window size, given the required viewing angle, is presented below.

a1: horizontal window size
d: distance between top of the lens and the window
Φ_{x} : required total viewing angle. If the required viewing angle is $\pm 50^{\circ}, \Phi_{\mathrm{x}}$ would be 100°
The minimum window width is:

$$
\mathrm{a} 1=3.4 \mathrm{~mm}+2 \mathrm{~d} \tan \left(\frac{\Phi_{\mathrm{x}}}{2}\right)
$$

Fig. 2

a2: horizontal window size
d : distance between top of the lens and the window
Φ_{y} : required total viewing angle. If the required viewing angle is $\pm 50^{\circ}, \Phi_{y}$ would be 100°
The minimum window width is:

$$
\mathrm{a} 2=1.9 \mathrm{~mm}+2 \mathrm{~d} \tan \left(\frac{\Phi_{\mathrm{y}}}{2}\right)
$$

Fig. 3

Example:

The horizontal or vertical receiving angle should be $\pm 60^{\circ}$, the distance between window and IR receiver is 3 mm . In that case the minimum window size should be: $13.78 \mathrm{~mm} \times 12.28 \mathrm{~mm}$

Calculation:

$\mathrm{a} 1=3.4 \mathrm{~mm}+2 \times 3 \mathrm{~mm} \times 1.73=13.78 \mathrm{~mm}$
$\mathrm{a} 2=1.9 \mathrm{~mm}+2 \times 3 \mathrm{~mm} \times 1.73=12.28 \mathrm{~mm}$

