

Symbols

Arrangement of Symbols

Letter symbols for current, voltage and power (according to DIN 41 785, sheet 1)

To represent current, voltage and power, a system of basic letter symbols are used. Capital letters are used for the representation of peak, mean, dc or rootmean-square values. Lower case letters are used for the representation of instantaneous values which vary with time.

Capital letters are used as subscripts to represent continuous or total values, while lower case letters are used to represent varying values.

The following table summarizes the rules given above.

Basic letter	
Upper-case	Upper-case
Instantaneous values which vary with time	Maximum (peak) average (mean) continuous (dc) or root- mean-square (RMS) values
Subscript(s)	
Upper-case	Upper-case
Varying component alone,i.e.,instantaneous, root-mean-square, maximum	Continuous (without signal) or total (instantaneous, average or maximum) values

Letter symbols for impedance, admittances, two-port parameters etc.

or average values

For impedance, admittance, two-port parameters, etc., capital letters are used for the representation of external circuits of which the device is only a part.

Lower case letters are used for the representation of electrical parameters inherent in the device.

The rules are not valid for inductance and capacitance. Both these quantities are denoted with capital letters.

Capital letters are used as subscripts for the designation of static (dc) values, while lower case letters are used for the designation of small-signal values.

If more than one subscript is used (h_{FE} , h_{fe}), the letter symbols are either all capital or all lower case.

If the subscript has numeric (single, double, etc.) as well as letter symbol(s) (such as h_{21E} or h_{21e}), the differentiation between static and small-signal value is made only by a subscript letter symbol.

Other quantities (values) which deviate from the above rules are given in the list of letter symbols.

The following table summarizes the rules given above.

Basic letter	
Upper-case	Upper-case
Electrical parameters inherent in the semiconductor devices except inductances and capacitances	Electrical parameters of external circuits and of circuits in which the semiconductor device forms only a part; all inductances and capacitances
Subscript(s)	
Upper-case	Upper-case
Small-signal values	Static (dc) values

Examples:

 R_{G} Generator resistance

 G_P Power gain

DC forward current transfer ratio in common emitter configuration

Parallel resistance, damping resistance r_P

Example for the use of Symbols

according to 41785 and IEC 148

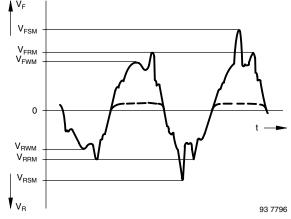


Figure 1.

٧F Forward voltage

Reverse voltage

V_{ESM} Surge forward voltage (non-repetitive)

V_{RSM} Surge reverse voltage (non-repetitive)

V_{FRM} Repetitive peak forward voltage

V_{RRM} Repetitive peak reverse voltage

V_{FWM} Crest working forward voltage

V_{RWM} Crest working reverse voltage

Document Number 84056 www.vishay.com Rev. 1.2, 20-Jan-04

Vishay Semiconductors

List of Symbols

A Anode

a Distance (in mm)

C Capacitance, general

C_{case} Case capacitance

C_D Diode capacitance

C_i Junction capacitance

C_L Load capacitance

C_P Parallel capacitance

F Noise figure

f Frequency

f_g Cut-off-frequency

I_F Forward current

i_F Forward current, instantaneous total value

I_{FAV} Average forward current, rectified current

I_{FRM} Repetitive peak forward current

I_{FSM} Surge forward current, non-repetitive

I_{FWM} Crest working forward current

I_R Reverse current

i_R Reverse current, instantaneous total value

IRAV Average reverse current

I_{RRM} Repetitive peak reverse current

I_{RSM} Non-repetitive peak reverse current

I_{RWM} Crest working reverse current

I_S Supply current

I_Z Z-operating current

I_{ZM} Z-maximum current

Length (in mm), (case-holder/soldering point)

LOCEP (local epitaxy)

A registrated trade mark of Vishay for a process ofepitaxial deposition on silicon. Applications occur in planer Z-diodes. It has an advantage compared to the normal process, with reduced reverse current.

P Power

Ptot Total power dissipation

P_V Power dissipation, general

P_{vn} Pulse-power dissipation

Q Quality

Q_{rr} Reverse recovery charge

R_F Forward resistance

r_f Differential forward resistance

R_I Load resistor

r_P Parallel resistance, damping resistance

R_R Reverse resistance

r_r Differential reverse resistance

r_s Series resistance

R_{thJA} Thermal resistance between junction and

R_{th,IC} Thermal reistance between junction and case

r_z Differential Z-resistance in breakdown region

 $(range) r_z = r_{zi} + r_{zth}$

 r_{zj} Z-resistance at constant junction temperature,

inherent Z-resistance

r_{zth} Thermal part of the Z-resistance

T Temperature, measured in centigrade

T Absolute temperature, Kelvin temperature

T Period duration

T_{amb} Ambient temperature (range)

T_{case} Case temperature

t_{fr} Forward recovery time

T_i Junction temperature

T_K Temperature coefficient

T_L Connecting lead temperature in the holder (sol-

dering point) at the distance/(mm) from case

t_P Pulse duration (time)

t_p/T Duty cycle

t_r Rise time

t_{rr} Reverse recovery time

t_s Storage time

T_{sd} Soldering temperature

T_{stq} Storage temperature (range)

V_{(BR}) Breakdown voltage

V_F Forward voltage

V_F Forward voltage, instantaneous total value

V_{FAV} Average forward voltage

V_o Rectified voltage

V_{ESM} Surge forward voltage, non-repetitive

V_{FRM} Repetitive peak forward voltage

V_{FWM} Crest working forward voltage

V_B Reverse voltage

V_R Reverse voltage, instantaneous total value

V_{RSM} Surge reverse voltage, non-repetitive

V_{RRM} Repetitive peak reverse voltage

V_{RWM} Crest working reverse voltage

V_Z Z-operating voltage

Z_{thp} Thermal resistance – pulse operation

η_r Rectification efficiency

ΔC_D Capacitance deviation